
clustr - iPhone app

Contents

1 General Overview 1

2 Spatial Distribution 2

3 Temporal Distribution 3

4 Estimating N 5

5 Putting it all together 6
5.1 Cumulative Probability . 6
5.2 Relative Probability Density . 7

6 To Merge or Not To Merge 7
6.1 Spatial Distribution . 7
6.2 Temporal Distribution . 8
6.3 Subtleties . 10

7 Parameter Values 10

8 Simulation Results 11

9 Future Directions 11
9.1 Modifying the Model . 11
9.2 Additional Signals . 11

10 References 13

The clustr iPhone app will allow users to take photos and send messages (and possibly also simply
announce their presence). The backend will then attempt to cluster the various contributions into clusters
organized by which event they correspond to. This clustering will, in a first draft, take into consideration
the temporal and spatial location of the various contributions. This document contains within it the
approach that we will take in performing this clustering.

1 General Overview

Following an event there will be multiple contributions spread out over both space and time. We need
to assume a certain form for the probability of a contribution at some space-time point (t,~r) given that
an event occurs at (⌧, ~µ). After working with these expressions for a while, it has become very clear that
in order to allow for analytic tractability, some simplifying assumptions must be made:

(i.) The distribution in space follows a two-dimensional Gaussian with mean (µ
x

, µ

y

), variance �

2
x

,�

2
y

and vanishing correlation, �
xy

= 0. In principle we want to allow for nontrivial correlation since we
can then classify interesting events that are not symmetric (e.g. parades). However, by considering
symmetric situations we simplify the problem considerably. Note that a truly symmetric event
would also have �

x

= �

y

, however this additional constraint makes the calculation below di�cult
and so at this initial point we allow them to vary independently.

(ii.) The distribution in time follows an exponential distribution which begins at time ⌧ and has a decay
rate of �. In principle, one would assume that it takes some amount of time for the first contribution
to happen because of reaction times etc, but by choosing a simple exponential distribution rather
than a more accurate one (e.g. a recinormal distribution) we simplify the calculation considerably
once again.

(iii.) There are many parameters for these models which we do not know a priori (µ
x

, µ

y

,�

x

,�

y

, ⌧,�). In
addition to these parameters the total number of contributions (which we shall call N) is also very
important. The reason for this is that the temporal distribution of points is naturally ordered. As
a result in order to do any kind of Bayesian analysis, we must treat N as a parameter. To see this,
consider the case of three contributions occurring at times 0, 1, 2 seconds. If the decay rate is very
large, you’d expect the vast majority of the contributions to happen right away. As a result, if there
are only three contributions in total, one could interpret the above data as indicating a large decay
rate (otherwise they would be much more spread out). However, if we know that these are only
the first three out of say one million contributions then it would be reasonably to assume a very
small decay rate (otherwise you should have seen a ton of points already). So, in order to estimate
the parameters one must know how many points there are. Unfortunately, considering N a
parameter in the analysis turns out to be impossibly di�cult. As a result, I have to press
on with the assumption that N is known and find some reasonable way to estimate it at the end.

The general algorithm will them proceed as follows. Each time a new contribution is added to a cluster,
we need to update our beliefs about the parameters (what are their most likely values? How certain
are we of them?). Then, each time a new contribution appears we must consider all nearby clusters and
compute the probability that this new point was generated from the same distribution. Then, given these
probabilities we decide where to place the new point. If this largest probability is below some tunably
threshold we don’t add it at all but instead create a new cluster for it.

Finally, suppose that for some reason, two clusters were created even though they are part of the same
event (perhaps the two first contributions occurred very far apart). In this case we may want to merge
the two in the future. In order to determine if this should happen, we must look at the two clusters and
compute the likelihood that the data in them was actually generated from the same distribution. If this
probability surpasses some threshold we go ahead and merge them.

Throughout all of this analysis we must ensure that the relevant algorithms are su�ciently fast so that
Parse won’t complain.

2 Spatial Distribution

The spatial distribution is presumed to be a multivariate Gaussian. We are ultimately interested in the
distribution p(~r

k+1|~r1, . . . ,~rk). In order to compute this, we consider all possible parameters µ
x

, µ

y

,�

x

,�

y

and compute the probability p(~r
k+1|µx

, µ

y

,�

x

,�

y

,~r1, . . . ,~rk) and then integrate over all the possibly
parameter sets, weighted by their posterior probability:

p(~r
k+1|~r1, . . . ,~rk) =

Z
p(~r

k+1|µx

, µ

y

,�

x

,�

y

,~r1, . . . ,~rk)p(µx

, µ

y

,�

x

,�

y

|~r1, . . . ,~rk)dµx

dµ

y

d�

x

d�

y

Under the assumption that the points are generated independently from each other, we have

p(~r
k+1|~r1, . . . ,~rk) =

Z
p(~r

k+1|µx

, µ

y

,�

x

,�

y

)p(µ
x

, µ

y

,�

x

,�

y

|~r1, . . . ,~rk)dµx

dµ

y

d�

x

d�

y

The first factor here is simply the Gaussian distribution itself while the second one is the posterior
distribution over the parameters. Using Bayes’ rule, we have

p(µ
x

, µ

y

,�

x

,�

y

|~r1, ~r2, . . .~rk) =
1

N p(~r1, ~r2, . . .~rk|µx

, µ

y

,�

x

,�

y

)p(µ
x

, µ

y

,�

x

,�

y

)

The final factor here is the prior that we place on the parameters. Since the event can happen anywhere
in the world, we will have a completely uninformative prior on µ

x

, µ

y

. However, the variance sets the size

2

of the event and will therefore have a nontrivial prior. Since we’re assuming that the x, y components are
generated independently we need only consider a univariate Gaussian analysis. As a result, we want to
compute the posterior probability p(µ,�|D) where D signifies the set of data observed so far, x1, . . . , xn

.

There are three well-studied versions of Bayesian inference of the Gaussian: unknown mean, unknown
variance, and unknown mean and variance. We are interested in the latter of these. In this case, the
conjugate prior is a Normal-Gamma distribution. Pulling from the third reference below, the posterior
distribution (for a one-dimensional Gaussian) is given by

p(µ,�|D) = NG(µ,�|µ
n

,

n

,↵

n

,�

n

)

µ

n

=
0µ0 + nx̄

0 + n

n

= 0 + n

↵

n

= ↵0 + n/2

�

n

= �0 +
1

2

nX

i=1

(x
i

� x̄)2 +
0n(x̄� µ0)2

2(0 + n)

Here the parameters µ0,0,↵0,�0 are the parameters governing the priors over the mean and precision
(� = 1/�2). Note that the definition of the NG distribution is as follows:

NG(µ,�|µ0,0,↵0,�0) = N (µ|µ0, (0�)
�1)�(�|↵0,�0)

Finally what we are really interested in is not so much what the parameters are, but rather what the
likelihood of a new observation is within a certain cluster. With this information, we can clearly classify
an event into the appropriate cluster. Integrating out the parameters, we are (according to eqn 100 in
the third reference below) left with a t-distribution:

p(x
new

|x1, . . . xn

) = t2↵n(x|µn

,

�

n

(
n

+ 1)

↵

n

n

)

Note that an uninformative prior on µ requires us to set 0 = 0. In this case, we’re left with

p(x
new

|x1, . . . xn

) = t2↵n

✓
x|x̄, n+ 1

n

�

n

↵

n

◆

↵

n

= ↵0 + n/2

�

n

= �0 +
1

2

nX

i=1

(x
i

� x̄)2

Perhaps a way to force the x, y dimensions to be treated symmetrically would be to simply keep track of
one ↵

n

and one �

n

and allow both x, y to contribute to them.

3 Temporal Distribution

The temporal distribution of timestamps is presumed to be exponential

p(t|⌧,�) = �e

��(t�⌧)
✓(t� ⌧)

This seems like a reasonable (yet simple) model: the contributions spike immediately following the event
and then decay exponentially. By tuning the decay rate, �, we can consider both very short events
and long events (like concerts). We are ultimately interested in answering the same question as for the
spatial distribution - given the first k observations, what is the probability that the next one has a certain
value: p(t

k+1|t1, . . . , tk). However, this time there are some interesting aspects that we need to take into
consideration. First of all, the data points that we observe are not independent of each other since they
are naturally sorted (the smallest time is revealed to us first followed by the second smallest and so on).

3

Contrast this with the spatial distribution for which each new point can be either farther away or closer
to the mean.

As before, we will compute

p(t
k+1|t1, . . . , tk) =

Z
p(t

k+1|⌧,�, t1, . . . , tk)p(⌧,�|t1, . . . , tk)d⌧d�

Once again, the final factor above is the posterior distribution over the parameters given the first k

observations. In order to compute this, we will once again use Bayes’ theorem

p(⌧,�|t1, . . . , tk) =
1

N p(t1, . . . , tk|⌧,�)p(⌧,�|;)

We will decide on a prior distribution, p(⌧,�|;) later, so for now let’s focus on the likelihood p(t1, . . . , tk|⌧,�).
In order to address this problem, we must assume that there are a fixed number of contributions, N .
Clearly N � k since we’ve already observed k contributions. In order for the first k contributions to occur
at times t1, . . . , tk, the remaining N � k contributions must all occur at times t > t

k

. The probability for
any given datapoint to occur in this interval is

�̃(t
k

) =

Z 1

tk

�e

��(t�⌧)
✓(t� ⌧)dt = e

��(max(tk�⌧,0))

Then, since N � k points have to fall in this interval while the other k points occur at t1, . . . , tk we have
(excluding an overall normalization constant)

p(t1, . . . , tk|⌧,�) / �

k

e

��(tk�⌧)(N�k)
e

��(t1+...+tk�k⌧)
✓(t1 � ⌧)

= �

k

e

��{(tk�⌧)(N�k)+kt̄�k⌧}
✓(t1 � ⌧)

= �

k

e

��{N(tk�⌧)+k(t̄�tk)}
✓(t1 � ⌧)

Since we don’t have any prior information on when this particular event occurred, we must assume
a completely non-informative prior on ⌧ . However, for the decay rate, �, we will assume a gamma
distribution

p(⌧,�|;) / �

↵

e

���

Putting these together, we then have

p(⌧,�|t1, . . . , tk) / �

k+↵

e

��{N(tk�⌧)+k(t̄�tk)+�}
✓(t1 � ⌧)

Now, we want to determine the other ingredient in the predictive distribution above, p(t
k+1|⌧,�, t1, . . . , tk).

In order for the (k+1)th contribution to occur at time t
k+1, the remaining N � k� 1 contributions must

happen at later times. Furthermore, since the prior contributions (t1, . . . , tk) are being conditioned upon,
they don’t factor into the distribution. As a result, we find

p(t
k+1|⌧,�, t1, . . . , tk) / �̃(t

k+1)
N�k�1

�e

��(tk+1�⌧)
✓(t1 � ⌧)

= e

��(tk+1�⌧)(N�k�1)
�e

��(tk+1�⌧)
✓(t1 � ⌧)

= �e

��(tk+1�⌧)(N�k)
✓(t1 � ⌧)

Putting these together we then have

p(t
k+1|t1, . . . , tk) /

Z 1

�1
d⌧

Z 1

0
d��

k+↵+1
e

��{N(tk�⌧)+k(t̄�tk)+� +(tk+1�⌧)(N�k)}
✓(t1 � ⌧)

=

Z
t1

�1
d⌧

Z 1

0
d��

k+↵+1
e

��{N(tk+tk+1)+k(t̄�tk�tk+1)+�+⌧(k�2N)}

=

Z 1

0
d��

k+↵+1
e

��{N(tk+tk+1)+k(t̄�tk�tk+1)+�} 1

�(k � 2N)
e

��t1(k�2N)

4

Removing normalization constants, we are left with evaluating the integral

p(t
k+1|t1, . . . , tk) /

Z 1

0
d��

k+↵

e

��{N(tk+tk+1)+k(t̄�tk�tk+1)+�+t1(k�2N)}
✓(t

k+1 � t

k

)

=
�(k + ↵+ 1)✓(t

k+1 � t

k

)

(N(t
k

+ t

k+1) + k(t̄� t

k

� t

k+1) + � + t1(k � 2N))k+↵+1

=
�(k + ↵+ 1)✓(t

k+1 � t

k

)

(N(t
k

+ t

k+1 � 2t1) + k(t̄+ t1 � t

k

� t

k+1) + �)k+↵+1

=
�(k + ↵+ 1)✓(t

k+1 � t

k

)

((N � k)(t
k

+ t

k+1 � 2t1) + k(t̄� t1) + �)k+↵+1

Notice that if N is very large, the sensitivity to t

k+1 in higher. In other words, one would find the
probability to be substantially larger for smaller t

k+1. This makes a lot of sense since if there are a lot
of contributions, then clearly the smallest of these will be rather small. This last way of writing the
distribution makes it clear that the denominator is always positive, something that’s clearly important.

We now turn to normalizing this distribution. This is important so that we can compare di↵erent clusters
with each other. The distribution above has the form

p(t
k+1|t1, . . . , tk) =

1

N
1

(t
k+1 + a)b

✓(t
k+1 � t

k

)

where a = t

k

�2t1+(k(t̄� t1)+�)/(N�k) and b = k+↵+1. In order to find the normalization constant
N , we must integrate this expression and set it equal to 1. For simplicity we will switch variables to
x = t

k+1 � t

k

. Defining w = a+ t

k

we must then have

1

N

Z 1

0

dx

(x+ w)b
= 1

Note that since w > 0, this integral does not encounter any divergences. Furthermore, since also b � 2
(since k > 1 for any cluster that already exists), this integral converges. We then find

1

N = (b� 1)wb�1

The probability distribution is then

p(t
k+1|t1, . . . , tk) = (b� 1)wb�1 1

(t
k+1 + a)b

✓(t
k+1 � t

k

)

= (b� 1)
(t

k

+ a)b�1

(t
k+1 + a)b

✓(t
k+1 � t

k

)

We then finally arrive at

p(t
k+1|t1, . . . , tk) = (k + ↵)(N � k)

{2(N � k)(t
k

� t1) + k(t̄� t1) + �}k+↵

{(N � k)(t
k+1 + t

k

� 2t1) + k(t̄� t1) + �}k+↵+1
✓(t

k+1 � t

k

)

What remains is now a way of estimating N . Ideally we would treat N just like the other parameters,
and update our beliefs of it over time and then sum over the various values just like we integrated over
⌧,�. However, the sums you end up with are so nontrivial that one cannot find any closed form solution
for them. As a result, we will have to estimate N in some other way and then use it in the above formula.
At best, we might consider a few di↵erent N values (perhaps various orders of magnitude) and perform
a simple three term summation over them.

4 Estimating N

At this point, I estimate N as
N = k +

p
k

5

This is loosely based on the error of the Poisson distribution which goes like the square root of the number
of observations. This estimate may very well be updated in the future. This is just a reasonable guess
placeholder for now.

5 Putting it all together

Given both a probability density over the next timestamp, t
k+1 and the next positions, x

k+1, yk+1 we
can now give the full probability as the product of these. Each time a new contribution is added we find
the nearby clusters and compute this probability for each of the clusters. We then pick the cluster that
gives us the largest probability as long as this largest probability surpasses some tunable threshold. If
this threshold is not met we instead create a new cluster and set its parameters according to the above
discussion.

There’s a subtlety with this approach that we must resolve. Fundamentally it stems from the fact that
the expressions we’ve arrived at are not truly probabilities but rather probability densities. To see where
this issue would creep up, suppose that we have a simpler situation with two nearby clusters. Forget
about the time component for a moment, and suppose that one cluster is centered at x = 0 with a very
large size while another one is centered at x = 1 with a very narrow size. Furthermore, suppose that a
new contribution appears at x = 0. Clearly, this contribution should be clustered in with the first cluster.
However, let’s see what the probability distributions look like:

p1(0) =
1p
2⇡�2

1

p2(0) =
1p
2⇡�2

2

e

�1/2�2
2

If we choose �1 su�ciently large for any given �2 we can make the first probability arbitrarily small.
In other words, while we should most certainly categorize this datapoint into the first cluster, we may
incorrectly classify it into the second cluster. Like I mentioned above, this fundamentally stems from
the fact that these are not actual probabilities but rather probability densities. As far as I currently see,
there are two ways around this that I’ll discuss below

5.1 Cumulative Probability

One way to turn these into actual probabilities is to compute what the probability is that the next
datapoint occurs at x

k+1 or more extreme values and similarly for the time. Assuming the covariance
is symmetric we would then want to compute (here � is the distance the (k + 1)th contribution is away
from the mean).

p(r � �|x
,

y1, . . . , xk

, y

k

) =

Z 1

r>�

Z 2⇡

0

1

2⇡�2
e

�r

2
/2�2

rdrd✓

Computing the integral gives

p(r � �|x
,

y1, . . . , xk

, y

k

) = e

��2
/2�2

Note that for� = 0 this return the full possible probability of 1 while as� � �, the probability decreases.

We do the same for the temporal distribution. We want to compute the probability that t

k+1 exceeds
some cuto↵ that we will call � for now. Using the expression above, we need to integrate
Z 1

�
p(t

k+1|t1, . . . , tk)dtk+1 = (k+↵)(N�k)

Z 1

�

{2(N � k)(t
k

� t1) + k(t̄� t1) + �}k+↵

{(N � k)(t
k+1 + t

k

� 2t1) + k(t̄� t1) + �}k+↵+1
✓(t

k+1�t

k

)dt
k+1

This equates to

p(t
k+1 � �|t1, . . . , tk) =

⇢
2(N � k)(t

k

� t1) + k(t̄� t1) + �

(N � k)(�+ t

k

� 2t1) + k(t̄� t1) + �

�
k+↵

6

5.2 Relative Probability Density

The other approach is to compare the density at a given point to the maximum value of the distribution.
This allows you you make comparisons between the various distributions in a normalized way. The
maximum for the spatial distribution occurs at the location of the mean. Approximating the t-distribution
by a Gaussian we find

f

spatial

(r
k+1|r1, . . . , rk) = e

��2
/2�2

where � is the variance we found above ((k + 1)�
n

/k↵

n

). Interestingly this gives precisely the same
expression as the cumulative expression. As for the temporal expression, we’re left with

f

temporal

(t
k+1|t1, . . . , tk) =

⇢
2(N � k)(t

k

� t1) + k(t̄� t1) + �

(N � k)(�+ t

k

� 2t1) + k(t̄� t1) + �

�
k+↵+1

6 To Merge or Not To Merge

As this algorithm runs, it may sometimes start two separate clusters that should really be one and the
same. Suppose e.g. that very first two contributions which are really part of a very large cluster (such
as a concert), occur far apart. It is then reasonable that they create two separate clusters. The various
nearby contributions will then be added to each of these, creating in the process two clusters that will
begin to almost overlap. At this point, the algorithm needs to identify that it initially made a mistake
and now go ahead and merge them into one single cluster.

Given two clusters with data (t(1)1 , x

(1)
1 , y

(1)
1), . . . , (t(1)

k

, x

(1)
k

, y

(1)
k

) and (t(2)1 , x

(2)
1 , y

(2)
1), . . . , (t(2)

p

, x

(2)
p

, y

(2)
p

),
we want to determine if they should be merged. We will consider two sides of this story, the spatial and
temporal data. Let’s begin with the spatial values since these are independent and identically distribution.

6.1 Spatial Distribution

Let’s for a moment focus exclusively on the x coordinates of the two events. At the end of the day we will
just end up performing a simple z-test on this data, but it’s instructive to see how we end up there as we
will be re-doing much of the analysis for the temporal part later on (in which case we will not simply be
performing a z-test). Assuming that the x-coordinates follows a simple Gaussian distribution, we have
that the posterior distribution over the parameters, µ,� is

p(µ,�|~x) = 1

N
�

↵0
0

�(↵0)

✓
�

2⇡

◆
k/2

�

↵0�1
e

��(1
2

Pk
i=1(xi�µ)2+�0)

Here we have used Bayes’ theorem to write the posterior in terms of p(~x|µ,�) and the prior p(µ,�|;)
which we choose to be a Gamma distribution over the precision, and uninformative over the mean just
as before. Since we’ll need it later, we quickly marginalize over the mean to obtain the distribution just
over the precision,

p(�|~x) ⇠ �

↵0+
k�1
2 �1

e

��(1
2

Pk
i=1(xi�hxi)2+�0)

We can now look at the two samples, x(1) and x

(2) and obtain a distribution over the two means µ

(1)

and µ

(2).
p(µ(1)

, µ

(2)
,�

(1)
,�

(2)|~x(1)
, ~x

(2)) = p(µ(1)
,�

(1)|~x(1))p(µ(2)
,�

(2)|~x(2))

We then switch to the variables s = µ

(1) + µ

(2) and � = µ

(1) � µ

(2) and follow that by an integration
over the sum, s. We’re left with the marginal distribution over the di↵erence between the two means

p(�,�

(1)
,�

(2)|~x(1)
, ~x

(2)) ⇠ N (hx(1)i � hx(2)i, �

(1)
�

(2)
kp

�

(1)
k + �

(2)
p

)

7

Given that the mean of the normal distribution occurs at hx(1)i� hx(2)i, the value zero (i.e. no di↵erence
between the two samples) lies z

x

standard deviations away from the mean, where z

x

is given by

z

x

=
|hx(1)i � hx(2)i|p

(�(1))2/k + (�(2))2/p

Here, we’ll use our best guess for the values of �(1) and �

(2). These are obtained by locating the mean of
the marginal distribution over � from above. This occurs at

�̄ =
↵0 +

k�1
2

1
2

P
N

i=1(xi

� hxi)2 + �0

In terms of the variance, �2 = 1/� we thus have

�

2 =
1

k + 2↵0 � 1

(
kX

i=1

(x
i

� hxi)2 + 2�0

)

We now clearly see how the prior should be interpreted: There are 2↵0 auxiliary observations with a
total variance of �0 prior to the first measurement.

So, the story goes as follows. Given two clusters, look at their x-values and use the above two formulas
to compute the z score between them. Then, as long as this z-score is above some threshold (perhaps
1 � 2) we realize that the means are significantly di↵erent and thus avoid merging them. Otherwise we
decide to merge them. That being said, we of course also have a similar metric for the y-coordinates. In
order to make a decision we should thus consider both of them, or more precisely the distance between
them. To be even more precise, given two independent z-scores, z

x

and z

y

their combined distribution is
also a Gaussian

p(z
x

, z

y

) = N
⇣
~0, 1

⌘

In terms of the “Euclidean distance”, r2 = z

2
x

+ z

2
y

, we have

p(r) = re

�r

2
/2

Suppose we want to know how improbable a value r � � is, then we’re left with evaluating

p(r � �) =

Z 1

�

p(r)dr = e

��

2
/2

Note that as � ! 0, this probability approaches 1. Similarly, for infinite r it approaches zero. We must
then in our model place some cuto↵ probability, p0 and require

z

2
x

+ z

2
y

� 2| ln p0|

in order to not merge the two clusters. If we put a very strict cuto↵ and say e.g. that p0 = 0.01, i.e.
we want to merge all clusters unless they are statistically very unlikely to be the same (1%). Then, we
would have to have z

2
x

+ z

2
y

� 9.21. Even if the x means were identical, the y means would have to di↵er
by at least 3 standard deviations for us to keep them separate. Since p0 is a tunable parameter, we can
adjust it as we see fit.

6.2 Temporal Distribution

We now re-do the analysis above for the temporal distribution. In particular, the posterior distribution
over the parameters ⌧,� is given by

p(⌧,�|~t) ⇠ �

k+↵

e

��{N(tk�⌧)+k(t̄�tk)+�}

8

Just like above we will later need a marginal distribution over the width. We thus begin by integrating
over ⌧

p(�|~t) ⇠ �

k+↵�1
e

��{N(tk�t1)+k(t̄�tk)+�}

The mean value for the width is thus

�̄ =
k + ↵

N(t
k

� t1) + k(t̄� t

k

) + �

Continue by considering two di↵erent sets of time measurements, ~t = t1, . . . tk and ~

� = �1, . . . ,�p

. We
will consider the joint distribution over ⌧1, ⌧2,�1,�2 and just like before integrate out the sum s = ⌧1+⌧2.
With �1,�2 fixed for now (we will later just plug in their average values from above), we have

p(s,�|~t, ~�) ⇠ e

1
2 (�1N��2M)�

e

1
2 (�1N+�2M)s

In order to integrate out s, we must be careful with the limits of integration. Since s+� = ⌧1 t1 and
s�� = ⌧2 �1, we must always have s Min(2t1 ��, 2�1 +�). Integrating out s then gives us

p(�|~t, ~�) = e

1
2 (�1N��2M)�+ 1

2 (�1N+�2M)Min(2t1��,2�1+�)

There are obviously two branches to this distribution depending on which side of t1��1, � falls on. Since
we now have a distribution over �, we want to figure out, given all the data, how improbably � = 0 is.
More precisely let’s compute the probability that � is at least as extreme as 0. In order to do this, we
must first normalize the distribution above. Doing this gives us

p(�|~t, ~�) = �1�2NM

�1N + �2M
e

� 1
2 (�1N��2M)(t1��1)

⇢
e

�1N�
e

� 1
2 (�1N+�2M)(t1��1) � t1 � �1

e

��2M�
e

1
2 (�1N+�2M)(t1��1) � > t1 � �1

Let’s assume, without loss of generality, that t1 > �1. If this is not the case, just interchange the meaning
of cluster 1 and cluster 2. In that case, � = 0 falls in the region � < t1 � �1. The probability that one
obtains at least as extreme a di↵erence as 0 is then

p(� 0) =
�1�2NM

�1N + �2M
e

��1N(t1��1)

Z 0

�1
e

�1N�
d� =

�2M

�1N + �2M
e

��1N(t1��1)

Notice that as �2 ! 1, i.e. all the probability is focused on the left side of t1 � �1, and simultaneously
t1��1 = 0, we obtain a total probability of 1 which is what we’d expect. So, all seems good so far. Now, if
this probability is very small it’s indicative that the di↵erence between he two ⌧ values is probably rather
large. As a result, we should probably not merge them. If we again place some small cuto↵ probability
p̃0 that this must be smaller than, we find that the di↵erence, t1 � �1 must exceed

t1 � �1 � 1

�1N

����ln
✓
�1N + �2M

�2M
p̃0

◆����

Recall once again the we have enforced the ordering t1 > �1 here. The estimates for �1 and �2 are once
again given by their posterior mean.

�1 =
k + ↵

N(t
k

� t1) + k(t̄� t

k

) + �

�2 =
p+ ↵

M(�
p

� �1) + p(�̄� �

p

) + �

The idea is now to first consider the spatial part of the story. If we decide that the clusters are not
su�ciently far apart, we then consider the temporal part. If the temporal part also passes the test (i.e.
they are not su�ciently di↵erent) we merge them. This way we avoid having to look at the thorny (see
below) temporal part unless we’re already considering merging the two clusters.

9

6.3 Subtleties

There is one slight subtlety in this (temporal) analysis. Suppose that for some reason after a cluster has
already been started, a small o↵-shoot of it starts its own mini cluster very nearby (obviously, since it’s
really the same cluster). The time stamps will then be e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 for the first cluster and
4, 5, 6 for the second cluster. The estimate for ⌧1 will be 1 and ⌧2 will be 4. These are of course very far
apart and thus, temporally the clusters shouldn’t be merged. So, while the timestamps seem very similar
to each other, they will not be merged. Perhaps this could be really cool: suppose you’re at a big event
and step outside during it and take a few photos. Perhaps having two separate clusters is kind of cool.
Also, suppose that two nearby events really did occur and that these two clusters really do correspond to
two events (maybe two nearby happy hours, one at 6pm and one at 6:30pm). Not merging them could
really be a benefit then.

Fundamentally it’s always better to merge too little than too much since too many merges will conflate
independent events. As a result, I’ll stick with the above analysis for now and think deeper about this
as we move forward.

7 Parameter Values

We now have a decent understanding of the Bayesian problem at hand, however we still have a few
parameters that we need particular values for. These parameters are ↵,�,↵0,�0. We also need a way
of estimating N , the total number of expected contributions. Let’s begin by looking at the temporal
distribution. The decay rate should then be in some range with mean of �⇤ and width of ��. Since the
decay rate follows the distribution ⇠ �

↵

e

���, the mean and width are given by

�⇤ =
↵+ 1

�

��

2 =
↵+ 1

�

2

Solving these for ↵,� we find
↵ = �

2
⇤/��

2 � 1

� = �⇤/��

2

Let’s suppose that the average event has a length of 600 seconds. We then need to set �⇤ = 1/600.
Furthermore, we want to support a large range of events so we need to have a rather large spread, ��.
By setting �� = 1/1000, we can support events all the way from 6.25 to 25 minutes (as our prior!) with
the mean event being 10 minutes. This gives

↵ = 1.778

� = 1667

As for the spatial distribution, ↵0,�0 refer to the parameters in the Gamma distribution which confusingly
are just like the above parameters for the temporal distribution with the exception that there’s a one-o↵
di↵erence in the ↵ parameter. As a result, we have (here � is the precision of the Gaussian - � = 1/�2.
Unfortunately I was stupid in how I chose the parameter names.... sorry)

�⇤ =
↵0

�0

��

2 =
↵0

�

2
0

Inverting these, we find
↵0 = �

2
⇤/��

2

�0 = �⇤/��

2

Suppose that we expect the average event to be rather small as e.g. 0.01 miles but we want to easily
support events up to 0.03 miles. Then we might want to choose �⇤ = 5500 and �� = 4500. This gives a

10

range in the precision between [1000, 10000] which translates into a width for the Gaussian of [0.01, 0.03]
with the mean falling closer to 0.01. The parameters should then be set to

↵0 = 0.111

�0 = 0.0000444

8 Simulation Results

Using the above parameters and algorithm, there are still a few loose ends. In particular, what should
the threshold probability be for a contribution to join a cluster? Furthermore, in addition to requiring a
minimum threshold to be met, one may want the best fit cluster to be at least some multiple bigger than
the second best fit. What should this multiple be? Finally, how many z scores away should two clusters
be in order for them not to be merged?

9 Future Directions

There are many other really interesting ideas for how to cluster events. They fall into two subcategories:
modifying the model, and adding additional signals.

9.1 Modifying the Model

While the above model seems to work rather well in simulations, there are still a few shortcomings that
can be addressed in future iterations.

i. It would be interesting to re-introduce the correlation between the x and y coordinates, �
xy

as this
will allow you to classify events that are asymmetric such as parades.

ii. The underlying assumption for the spatial part of the story is that the contributions follow a
Gaussian centered at the location of the event. However, this may not be the case. Consider e.g. a
baseball game where the event takes place on the field, but all the potential contributions occur in
an annular region around the center. In this case, the distribution oohs completely di↵erent. The
way to attack this would be to allow for a finite set of distributions, one of which is a Gaussian
while others more appropriate to the baseball game are also included. Then we place a prior on
the various distributions presumably strongly in favor of the Gaussian since most events would
likely look like that. Then, just like we integrate out all the parameters to obtain a true posterior
distribution, we also sum over the various models.

iii. The same issue as was mentioned above for the non Gaussian spatial distribution could also occur for
the temporal case. One could imagine a scenario where an event takes place continuously between
two strict time limits such as a concert or a sports event. In these cases you’d not really see a decay
of events but rather a uniform distribution between two extreme values. The same approach as
above would work – simply sum over the various models with some appropriate priors.

iv. So far we can only classify stationary events, but what about events taking place on a bus/cruise/car?
I’m not sure of the best way to classify these events, but it would be an interesting problem to be
sure. Perhaps the main idea would be to add an additional parameter – speed, place a prior on it
and integrate it out just like everything else.

v. Using di↵erent parameters for the priors in di↵erent places, based on historical contributions. If we
know that the location of a certain contribution lies at a baseball stadium, we should probably shift
the prior in favor of an annular region. Similarly, events in New York city will most likely have a
larger number of contributions than events in the middle of nowhere.

11

9.2 Additional Signals

So far the model only takes into account the location and time of each contribution, but there are also
additional signals that we can look at to determine clustering.

i. User Id. Presumably two photos taken close in time and space to each other by the same user
should be clustered together. So, even if the location and time are not su�ciently close together to
warrant clustering, this signal might push it over the edge. This might be particularly useful in the
case of moving events.

ii. I already mentioned above that we might want to update priors based on location. In other words,
we might want to classify locations into a few categories, suburban, urban, stadium, landmark,
. . . and use this as a signal as well.

iii. Using iBeacon we can broadcast to all those around us each time we upload a contribution. When
those other people later upload a contribution they will also send a long a list of people they’ve
been nearby recently. We can then use this information to cluster the new contribution together
with the prior one if they are su�ciently near each other in space and time anyway.

12

10 References

Reaction times: http://cogprints.org/6326/1/moscoso-bbs.pdf
Bayesian online learning: http://www.ki.tu-berlin.de/fileadmin/fg135/publikationen/opper/Op98b.pdf
Bayesian inference of the Gaussian: http://www.cs.ubc.ca/ murphyk/Papers/bayesGauss.pdf
ML book: http://www.hua.edu.vn/khoa/fita/wp-content/uploads/2013/08/Pattern-Recognition-and-Machine-
Learning-Christophe-M-Bishop.pdf
failure analysis: http://informatik.hu-berlin.de/Members/salfner/publications/salfner10survey.pdft

13

