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We derive, using a probabilistic arrival model of market orders, a notion of book pressure that 
differs (sometimes quite substantially) from the usual version of log(bid volume / ask volume). 
 
Suppose that the orderbook is fixed with  units on the ask and  units on the bid:A B  
 

 
Furthermore, suppose that market orders arrive to either buy or sell and that the volumes of 
these orders are fixed at exactly one unit. Let’s model these orders as arriving in such a way 
that the inter-arrival times between two buy orders are iid exponential (and similar for the 
inter-arrival times between two sell orders). This will guarantee that the number of orders of 
either type after a period of time follows a Poisson random variable. 
 

Buy Orders:     t xp(λ )       N (t) oisson(λ t)Δ ~ E B →  Buy ~ P B  
Sell Orders:     t xp(λ )       N (t) oisson(λ t)Δ ~ E S →  Sell ~ P S  

 
Note that the two parameters,  and  are distinct. In other words, the two types of ordersλB λS  
may arrive with different rates. 
 
Since the orderbook is fixed and the orders that are arriving are all removing existing limit 
orders, it’s just a matter of time before either of the two levels are taken out. What we’d like to 
know is which one is more likely to be taken out first (and with what probability).  1

 

1 Note that if the two arrival rates are sufficiently different, it may very well be the case that the level with 
the largest available volume could still be more likely to be taken out first. In other words, the naive notion 
of book pressure may not always present the full picture. Instead we will need to also model the arrivals of 
the orders (which we’re doing here). 



Before we answer this question, let’s consider a slightly more basic question: At what time do 
we expect the bid to be taken out (and similarly for the ask)? Of course, the time at which this 
occurs will be a random variable since it depends on the arrival of market orders, but we should 
nonetheless be able to compute a probability distribution describing this time.  
 
Since each inter-arrival time is iid exponential, we are really asking about the probability 
distribution of the sum of a set of these random variables. In particular if there are  unitsB  
available on the bid, we would like to know the probability distribution of  whereT Bid Taken Out  
 

T Bid Taken Out = T 1 + T 2 + . . . + T B  
 
It’s well known that the sum of a set of iid exponential random variables follows an Erlang 
distribution (reference). In other words, the time at which the bid is taken out follows an Erlang 
distribution: 
 

 t e /(B )! T Bid Taken Out ~ λS
B B−1 −λ tS − 1  

 
Note that the distribution for when the bid is taken out depends on the arrival of market sell 
orders  and the size available on the bid,  which makes sense. Similarly, for the ask weλS B  
have: 
 

 t e /(A )! T Ask Taken Out ~ λB
A A−1 −λ tB − 1  

 
The probability that the bid is taken out before the ask is then: 
 

p(Bid taken out f irst) t dτ  λ t e /(B )! τ e /(A )! =  ∫
∞

0
∫
∞

t
d S

B B−1 −λ tS − 1 · λB
A A−1 −λ τB − 1  

 
In order to compute this integral, let’s first move some stuff out of there: 
 

p  t dτ t e  e =  λ λS
B

B
A

(B−1)!(A−1)! ∫
∞

0
∫
∞

t
d B−1 −λ tS · τA−1 −λ τB  

 
To help with this, let’s recall that  
 

e  dx (− )  ( e )∫
 

 
xk −λx =  1 k+1 ∂k

∂λk λ
1 −λx  

This means that the expression above can be integrated once to get 
 

p  t t e  − ) ( e ) =  λ λS
B

B
A

(B−1)!(A−1)! ∫
∞

0
d B−1 −λ tS · ( 1 A−1 ∂A−1

∂λB
A−1

1
λB

−λ tB  

We can pull the partial derivatives out of the integral to get 

https://en.wikipedia.org/wiki/Erlang_distribution#Related_distributions


 

p { (− ) t t  } =  λ λS
B

B
A

(B−1)!(A−1)!
∂A−1

∂λB
A−1 1 A−1 1

λB
∫
∞

0
d B−1 · e−(λ +λ )tS B  

 
This last integral is of the same form and can thus be evaluated (here we’ve defined Λ = λS + λB
for simplicity: 
 

}p { (− ) (− ) [ ] =  λ λS
B

B
A

(B−1)!(A−1)!
∂A−1

∂λB
A−1 1 A−1 1

λB
1 B−1 ∂B−1

∂ΛB−1
1
Λ  

 
The inner derivative can easily be computed to yield 
 

}p  (− ) (− )  { (− ) (B )! =  λ λS
B

B
A

(B−1)!(A−1)! 1 A−1 1 B−1 ∂A−1

∂λB
A−1

1
λB

1 B−1 − 1 1
ΛB  

 
Putting the definition for  back in, we then finally arrive atΛ  
 

}p  (− )  { = (A−1)!
 λ λS

B
B
A

1 A−1 ∂A−1

∂λB
A−1

1
λB

1
(λ +λ )B S

B  

 
Let’s take a look at the derivative term since it’s a little tricky to evaluate (it turns out to be 
closely related to Pascal’s triangle.) In order to attack this derivative, let’s write things in a less 
cluttered way by focusing on the following: 
 

{  }∂k

∂xk
1
xn

1
(x+y)m  

 
Let’s call the function inside the derivative here,  It’s simple to show that(x, ).f n, m y  
 

 f (x, y )  f  f∂
∂x n, m  =  − n n+1, m − m n, m+1  

 
Perhaps you can see Pascals’ triangle in this expression? Basically, you’re summing the prior 
two levels. The end result is the following sum : 2

 

 f (x, y ) (n )!(m )! f (x, y)∂k

∂xk n, m  =  (−1)k

(n−1)!(m−1)! ∑
k

i=0
+ k − 1 − i − 1 + i n+k−i, m+i  · k!

i!(k−i)!  

 
We can now go back to our original expression (using ):, m , kn = 1  = B  = A − 1  
 

p  (− ) (A )!(B )!  = (A−1)!
 λ λS

B
B
A

1 A−1
(B−1)!
(−1)A−1

∑
A−1

i=0
− 1 − i − 1 + i 1

λB
A−i

1
(λ +λ )B S

B+i · (A−1)!
i!(A−1−i)!  

Simplifying this a bit, we find 

2 As a sanity check, you can work this out for the two cases above, k=0 and k=1. 



p   = (B−1)!
 λ λS

B
B
A

∑
A−1

i=0
i!

(B−1+i)! 1
λB

A−i
1

(λ +λ )B S
B+i  

 
We can simplify this a bit further by pulling out the lambdas from the sum: 
 

p ) ( ) = ( λS
λ +λB S

B ∑
A−1

i=0
i!(B−1)!
(B−1+i)! λB

λ +λB S

i  

 
If we define the ratio , we can write this succinctly as= λ /(λ )γ :  B B + λS   
 

 
This expression can be written in terms of hypergeometric functions, but that’s not particularly 
helpful in our case. 
 
Here’s a plot of what this looks like for equal arrival rates as a function of the size on the ask 
(bid size fixed at 100 units): 

 
 
Sanity Check 
 
As a sanity check, let’s compute this for the case  and . In this case, sinceλB = λS A = B  
everything is symmetric, we would expect the probability of the bid being taken out before the 
ask to be exactly 50%. To avoid clutter, let’s just call the two rates  and the two λλA =  B → λ  
volumes . B A =  → V  

p 1 ) = ( − γ B ∑
A−1

i=0
(B−1)!

(B−1+i)!
i!
γi  



 
In this case, , so/2γ = 1  
 

p   = 1
2V

∑
V −1

i=0

(V −1+i)!
i! (V −1)!

1
2i

 

This sum can be evaluated explicitly to give 
 

 2 /2p =  1
2V

V −1 = 1  

 
In other words, if the rates are the same and the volumes are the same, neither level is more 
likely to be taken out first. This makes sense and gives us faith in the expression above. 
 
 
Generalizing to Arbitrary Order Sizes 
The question is now how we remove the assumption of equal order sizes. In reality, each order 
does not have the same size but rather the size of the orders follows some type of distribution 
(possibly something like a log-normal distribution). The question of how long one would need to 
wait before the level is taken out is then not as simple as just asking what the distribution is of a 
sum of a fixed number of exponential variables. Rather, the number of such variables is itself a 
random variable since it’s not a priori clear how many orders will be necessary in order to take 
out a level. 
 
Under the assumption that each order’s size is iid, we ought to first ask how many orders will be 
necessary to take out a level. This is then a random variable whose distribution we can 
determine. Then, once we have that count, we can then ask about the conditional distribution of 
the total time necessary to take out that level. We thus get a chain of distributions: 
 

(t) (t | k orders) (k orders)p =  ∑
∞

k=0
p · p  

 
The first of these factors is what we have already worked with above: the Erlang distribution. It’s 
the second factor that’s new. In the analysis above, we knew already that a size of A on the ask 
would require precisely A orders to arrive, but here the story is more complicated. 
 

(t) t e /(k )! (k | V )p ~ ∑
∞

k=1
λ 
k k−1 −λ t − 1 · p  

 
Here the exponents are no longer related to the volume available but rather to the number of 
orders that must arrive. This latter variable is then governed by the distribution in the second 
factor, and this distribution is conditioned on the volume available. At the end of the day, the 
probability that we’re ultimately interested in (bid taken out before ask or vice versa) will be an 



infinite sum of expressions identical to the ones above (let  represent the number of ordersk  
required to take out the bid and  the number of orders required to take out the ask):p  
 

p p(k | B) p(p | A) (1 ) = ∑
∞

k=1
∑
∞

p=1
 − γ k ∑

p−1

i=0
(k−1)!

(k−1+i)!
i!
γi  

 
Some of the heavy lifting has thus already been done in our analysis above. We now move on 
to model the distribution of the number of orders required to take out either the bid or the ask. 
 
First we must determine how the individual order sizes are distributed. One would guess that 
they may be log-normal since a lot of “size” data is distributed in this way. Taking a look at the 
distribution seems to confirm that this is a reasonable model: 
 
Buy Orders: 

 
Sell Orders: 
 



 
 
Of course, they are not perfectly normally distributed, but it does appear to be a reasonable 
model that captures a lot of the true underlying distribution. 
 
Assuming then that each order follows a log-normal distribution with some mean and variance 
(which generally are different for the buy and sell orders), we must now answer the question of 
how many such orders are necessary to take out a level. The total incoming order volume after 

 orders will follow the distribution of the sum of  iid log-normal random variables. Thisk k  
distribution is not simple, but fortunately is reasonably well approximated by another log-normal 
distribution. Using the Fenton-Wilkinson approximation (see this paper) we can then 
approximate: 
 

   with    and   N (μ , σ ),V (k) =  ∑
k

i=1
V i ~ L k̃  k˜ )/k 1]σk˜

2 =  log [(eσ2
− 1 +  (k) |σ |μk̃ = μ + log + 2

1 ˜ k
2 − σ2  

 
Here  are the mean and variance of the normal distribution that underlies the log-normal, σμ   
distribution from which the order sizes are generated. Note that the mean of the total volume 
traded increases with the number of orders considered (k). This, of course, makes sense. 
 
So, given the total volume necessary to be taken out (let’s call this ) as well as a fixed numberΛ  
of orders, , we can compute how likely it is that the level was taken out:k  
 

http://leo.ugr.es/pgm2012/submissions/pgm2012_submission_6.pdf


(Λ | k) N (v ; μ , σ ) dvp =  ∫
∞

Λ
L  ˜ k  ˜ k

  

I performed a simple Monte Carlo simulation to compare the results against the theoretical 
distribution (basically 1-CDF for the cumulative log-normal distribution) and found very strong 
agreement. For example, with a volume of 10 units, and , the probability of the− .5, σ .8μ = 0  = 0  
level being taken out as a function of the number of orders are almost identical: 
 

 
What we’re really interested in, however, is the reverse probability, . We need to be(k | Λ)p  
careful though since the above probabilities, , are not independent. In reality we only(Λ | k)p  
proceed to the next trial (i.e. look at the next order) if the prior trial fails. As such, the probability 
of succeeding on the  trial is equal to the probability of failing on trial  followed by akth k − 1  
success on the  trial:kth  
 

(k | Λ) p(Λ | k) 1 (Λ | k )) p =  · ( − p − 1  
We thus have: 
 

p { p (B | k) 1 (B | k )) } { p (A | k) 1 (A | k )) } (1 ) = ∑
∞

k=1
∑
∞

p=1
S · ( − pS − 1 ·  B · ( − pB − 1 − γ k ∑

p−1

n=0
(k−1)!

(k−1+n)!
n!
γn  

 
Writing the individual probabilities in terms of error functions (which have fast(Λ | k)p  
implementations in numpy), we have 
 

p {( erf ( )) erf ( ) } ( erf ( )) erf ( ) } (1 ) = ∑
∞

k=1
∑
∞

p=1
2
1 − 2

1
σ√2˜ k

log(B)−μ̃k  · ( 2
1 + 2

1
σ√2˜ k−1

log(B)−μ̃k−1 · { 2
1 − 2

1
σ√2˜ p

log(A)−μ̃p · ( 2
1 + 2

1
σ√2˜ p−1

log(A)−μ̃p−1 − γ k ∑
p−1

n=0
(k−1)!

(k−1+n)!
n!
γn  

 
This is a rather tricky expression and I suspect that there is not a particularly useful alternate 
form for it (I could be wrong!). However, in practice, we will not need the full expression but 
rather only an approximation to it. As such, I suggest that we truncate the infinite sums 



whenever the probabilities  drop sufficiently low (or better yet when the cumulative(k | Λ)p  
probability up to k exceeds some large threshold like 0.99). 
 
Here is some working python code. Generally it appears to take ~0.01 seconds to perform one 
call to prob(...). 
 

import numpy as np 
import math 
 

def p_on_or_before_trial(Lambda, k, mu, sigma): 
    # Probability that the level is taken out by trial k (could 
    # happen before k too). 

    sigma_sum = np.log((np.exp(sigma**2) - 1)/k + 1)**0.5 
    mu_sum = mu + np.log(k) + 0.5 * abs(sigma_sum**2 - sigma**2) 
    return (1 - (0.5 + 0.5 * math.erf((np.log(Lambda) - mu_sum) / 
            (np.sqrt(2)*sigma_sum)))) 
 

def p_on_trial(Lambda, k, mu, sigma): 
    # Probability that the level is taken out on trial k 
    # (neither before nor after). 
    prob = (p_on_or_before_trial(Lambda, k, mu, sigma) * 

            (1-p_on_or_before_trial(Lambda, k-1, mu, sigma))) 
    return prob 
 

def p_bid_first(k_bid, k_ask, rate_buy_orders, rate_sell_orders): 
    # Probability that the bid is taken out before the ask given 
    # the number of orders necessary to take out the levels. 
    gamma = rate_buy_orders / (rate_buy_orders + rate_sell_orders) 

    p = (1-gamma)**k_bid * sum( 
        [math.factorial(k_bid + i - 1) / math.factorial(k_bid - 1) * 
         gamma**i / math.factorial(i) for i in range(k_ask)]) 
    return p 
 

def prob(vol_bid, vol_ask, mu_buy, sigma_buy, mu_sell, 
         sigma_sell, rate_buy, rate_sell): 
    # Puts it all together and computes the probability that 
    # the bid is taken out first. 

    center_k = int(vol_bid / np.exp(mu_sell + sigma_sell**2/2)) 
    center_p = int(vol_ask / np.exp(mu_buy + sigma_buy**2/2)) 
    low_k, high_k = max(center_k - 5, 1), center_k + 5 
    low_p, high_p = max(center_p - 5, 1), center_p + 5 
    prob_bid_first = 0  



 
 
Evaluation 
 
I performed a Monte Carlo simulation to see how well this approximation works. The simulated 
values were generated using the following logic: 
 

 
The results are very encouraging! In fact, the correlation looks almost perfect (there’s noise 
because of the simulation): 

    for k in range(low_k, high_k): 
        for p in range(low_p, high_p): 
            prob_bid_first += ( 

                p_on_trial(vol_bid, k, mu_sell, sigma_sell) * 

                p_on_trial(vol_ask, p, mu_buy, sigma_buy) * 

                p_bid_first(k, p, rate_buy, rate_sell) 

            ) 

    return prob_bid_first 

def time_to_take_out(target_vol, order_rate, mu, sigma): 
    t = 0 
    vol = 0 
    while vol < target_vol: 
       # print(t) 
        t += np.random.exponential(1.0/order_rate) 
        vol += np.random.lognormal(mu, sigma) 

    return t 
 

def bid_first(bid_size, ask_size, buy_mu, buy_sigma, 
              sell_mu, sell_sigma, buy_rate, sell_rate): 
    times_bid_taken_out = [] 

    times_ask_taken_out = [] 

    for i in range(1000): 
        times_bid_taken_out.append( 

            time_to_take_out(bid_size, sell_rate, sell_mu, sell_sigma)) 

        times_ask_taken_out.append( 

            time_to_take_out(ask_size, buy_rate, buy_mu, buy_sigma)) 

 

    bid_first = np.mean( 

        [b < a for b, a in zip(times_bid_taken_out, times_ask_taken_out)] 
    ) 

    return bid_first 



 

 
This makes me confident that the expression that we derived above (and also the following 
approximation in code) are representative of the underlying distribution that governs book 
pressure. 
 
Application 
 
One nice way to apply this would be to compare this expression against the “naive” book 
pressure formula of log(bid/ask). It’s possible that for various order arrival rates and sizes, this 
more complete book pressure formula could point in the opposite direction from the naive one. 
This would allow us to bet against the market but in the correct direction. 
 



I performed such a comparison and found the following very weak correlation: 
 

 
Note that here we look at the probability that the ask is taken out before the bid (opposite of the 
computation above) which is really the thing we ought have looked at all along since this would 
generally indicate a positive price movement. 
 
Note also that the two variables are somewhat correlated: when the naive book pressure 
increases, the probability of the ask being taken out before the bid also generally increases. 
However, this relationship is very weak and there are many instances where the two point in 
opposite directions: 
 



 
 
The actual applicability of this signal will depend on what the actual order arrival rates etc are. 
 
I generated this same plot using real order data and found that there are quite a bit of situations 
where the two signals disagree, suggesting that we may be able to act on low-competition 
opportunities: 
 

 



 
Inter-Arrival Times 
Are the inter arrival times actually exponentially distributed? It turns out that they’re not truly 
exponentially distributed, but almost. In particular, “slow” trades are exponentially distributed, 
but “fast” trades are not. Or, more precisely, they at least follow two distinct types of 
distributions.  
 
To check this, one can look at the cdf. However, since the CDF for hte exponential distribution is 
also exponential, it’s tough to inspect this visually. Instead we plot  and expect to(1 df )− log − c  
see a straight line with slope . In reality we see something that approaches a line for largerλ  
times, but has a distinct curve near the bottom: 
 

 
 
If we exclude these “fast” trades (let’s say sub-second), then the plot looks very linear: 
 



 
Similarly, if we drop the points after one second, the plot is also quite linear: 

 
Point being that I think the exponential distribution reasonably well models the inter-arrival times 
(although certainly not perfectly). 


